Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Microbiol Immunol ; 68(5): 165-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444370

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global public health crisis. The causative agent, the SARS-CoV-2 virus, enters host cells via molecular interactions between the viral spike protein and the host cell ACE2 surface protein. The SARS-CoV-2 spike protein is extensively decorated with up to 66 N-linked glycans. Glycosylation of viral proteins is known to function in immune evasion strategies but may also function in the molecular events of viral entry into host cells. Here, we show that N-glycosylation at Asn331 and Asn343 of SARS-CoV-2 spike protein is required for it to bind to ACE2 and for the entry of pseudovirus harboring the SARS-CoV-2 spike protein into cells. Interestingly, high-content glycan binding screening data have shown that N-glycosylation of Asn331 and Asn343 of the RBD is important for binding to the specific glycan molecule G4GN (Galß-1,4 GlcNAc), which is critical for spike-RBD-ACE2 binding. Furthermore, IL-6 was identified through antibody array analysis of conditioned media of the corresponding pseudovirus assay. Mutation of N-glycosylation of Asn331 and Asn343 sites of the spike receptor-binding domain (RBD) significantly reduced the transcriptional upregulation of pro-inflammatory signaling molecule IL-6. In addition, IL-6 levels correlated with spike protein levels in COVID-19 patients' serum. These findings establish the importance of RBD glycosylation in SARS-CoV-2 pathogenesis, which can be exploited for the development of novel therapeutics for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interleucina-6 , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Glicosilação , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Interleucina-6/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , Asparagina/metabolismo , Polissacarídeos/metabolismo
2.
bioRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37609144

RESUMO

People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.

3.
Cancer Discov ; 13(9): 2050-2071, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272843

RESUMO

Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE: This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Células Neoplásicas Circulantes/metabolismo , Paclitaxel/uso terapêutico , Glicoproteínas , Biomarcadores Tumorais , Metástase Neoplásica
4.
Cancer Res Commun ; 3(2): 175-191, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36968141

RESUMO

The tumor-associated antigen mesothelin is expressed at high levels on the cell surface of many human cancers, while its expression in normal tissues is limited. The binding of mesothelin to the tumor-associated cancer antigen 125 (CA-125) can lead to heterotypic cell adhesion and tumor metastasis within the pleural and peritoneal cavities. Immunotherapeutic strategies targeting mesothelin are being intensively investigated. Here, we report the crystal structures of mesothelin that reveal a compact, right-handed solenoid consisting of 24 short helices and connecting loops. These helices form a nine-layered spiral coil that resembles ARM/HEAT family proteins. Glycan attachments have been identified in the structure for all three predicted N-glycosylation sites and confirmed with samples from cell culture and patient ascites. The structures of full-length mesothelin and its complex with the Fab of MORAb-009 reveal the interaction of the antibody with the complete epitope, which has not been reported previously. The N-terminal half of mesothelin is conformationally rigid, suitable for eliciting specific antibodies, whereas its C-terminal portion is more flexible. The structure of the C-terminal shedding-resistant fragment of mesothelin complexed with a mAb 15B6 displays an extended linear epitope and helps explain the protection afforded by the antibody for the shedding sites. Significance: The structures of full-length mesothelin and its complexes with antibodies reported here are the first to be determined experimentally, providing atomic models for structural organization of this protein and its interactions with antibodies. It offers insights into the function of mesothelin and guidance for further development of therapeutic antibodies.


Assuntos
Mesotelina , Neoplasias , Humanos , Proteínas Ligadas por GPI/química , Neoplasias/terapia , Antígenos de Neoplasias/uso terapêutico , Epitopos/uso terapêutico
5.
Biology (Basel) ; 12(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36829569

RESUMO

Enhanced N-glycan branching is associated with cancer, but recent investigations supported the involvement of less processed N-glycans. Herein, we investigated how changes in N-glycosylation influence cellular properties in neuroblastoma (NB) using rat N-glycan mutant cell lines, NB_1(-Mgat1), NB_1(-Mgat2) and NB_1(-Mgat3), as well as the parental cell line NB_1. The two earlier mutant cells have compromised N-acetylglucosaminyltransferase-I (GnT-I) and GnT-II activities. Lectin blotting showed that NB_1(-Mgat3) cells had decreased activity of GnT-III compared to NB_1. ESI-MS profiles identified N-glycan structures in NB cells, supporting genetic edits. NB_1(-Mgat1) had the most oligomannose N-glycans and the greatest cell invasiveness, while NB_1(-Mgat2) had the fewest and least cell invasiveness. The proliferation rate of NB_1 was slightly slower than NB_1(-Mgat3), but faster than NB_1(-Mgat1) and NB_1(-Mgat2). Faster proliferation rates were due to the faster progression of those cells through the G1 phase of the cell cycle. Further higher levels of oligomannose with 6-9 Man residues indicated faster proliferating cells. Human NB cells with higher oligomannose N-glycans were more invasive and had slower proliferation rates. Both rat and human NB cells revealed modified levels of ER chaperones. Thus, our results support a role of oligomannose N-glycans in NB progression; furthermore, perturbations in the N-glycosylation pathway can impact chaperone systems.

6.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675908

RESUMO

Many wild edible polypore mushrooms have medicinal value. In this study, we investigate the potential medicinal properties of the wild polypore mushroom Royoporus badius collected from north-central British Columbia, Canada. Water extract from R. badius was found to exhibit potent immunomodulatory activity. The extract was purified using DEAE-Sephadex anion-exchange chromatography as well as Sephacryl S-500 and HPLC BioSEC5 size-exclusion chromatography, to yield a novel polysaccharide-protein complex (IMPP-Rb).IMPP-Rb has a peak maxima molecular weight (Mp) of 950 kDa. GC-MS analyses showed that IMPP-Rb is composed predominantly of glucose (49.2%), galactose (11.3%), mannose (10.8%), rhamnose (9.6%), and galacturonic acid (8.2%), with smaller amounts of xylose (5.2%), fucose (2.8%), N-acetyl glucosamine (1.8%), and arabinose (1.2%). IMPP-Rb has multiple linkages, with 4-Glcp, 4-Manp, 6-Manp, 3,4-Manp, 4-Xylp, and 2-Rhap being the most prominent. IMPP-Rb is capable of inducing many cytokines in vitro and the protein component is indispensable for its immunomodulatory activity. IMPP-Rb has potential application as an immuno-stimulatory agent with pharmaceutical value.

7.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
8.
Sci Rep ; 12(1): 17298, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241661

RESUMO

A novel polysaccharide EtGIPL1a was purified from fruiting bodies of Echinodontium tinctorium, a fungus unique to western North America. EtGIPL1a has an estimated weight average molecular weight of 275 kDa and is composed of glucose (54.3%), galactose (19.6%), mannose (11.1%), fucose (10.3%), glucuronic acid (4%), and rhamnose (0.6%). It has multiple glycosidic linkages, with 3-Glcp (28.9%), 6-Glcp (18.3%), 3,6-Glcp (13%), 4-GlcpA (9.2%), 6-Galp (3.9%), 2,6-Galp (2.6%), 3-Fucp (2.5%), 6-Manp (2.4%) being the most prominent, and unsubstituted glucose (15.3%), mannose (1.3%) and fucose (0.9%) as major terminal sugars. EtGIPL1a has a backbone containing mostly 3-substituted ß-glucopyranose with 4-substituted glucopyranosyluronic acid. EtGIPL1a showed anti-proliferative activity against multiple cancer cell lines, with IC50 ranging from 50.6 to 1446 nM. Flow cytometry analyses confirmed that apoptosis induction is one mechanism for its anti-proliferative activity. EtGIPL1a should be further investigated for its potential anti-cancer activity in animal models, and for its possible utility in differentiation cancer therapy.


Assuntos
Basidiomycota , Galactose , Animais , Fucose , Glucose/análise , Ácido Glucurônico , Manose , Peso Molecular , Polissacarídeos/farmacologia , Ramnose
9.
Nat Commun ; 13(1): 5226, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064941

RESUMO

O antigens are ubiquitous protective extensions of lipopolysaccharides in the extracellular leaflet of the Gram-negative outer membrane. Following biosynthesis in the cytosol, the lipid-linked polysaccharide is transported to the periplasm by the WzmWzt ABC transporter. Often, O antigen secretion requires the chemical modification of its elongating terminus, which the transporter recognizes via a carbohydrate-binding domain (CBD). Here, using components from A. aeolicus, we identify the O antigen structure with methylated mannose or rhamnose as its cap. Crystal and cryo electron microscopy structures reveal how WzmWzt recognizes this cap between its carbohydrate and nucleotide-binding domains in a nucleotide-free state. ATP binding induces drastic conformational changes of its CBD, terminating interactions with the O antigen. ATPase assays and site directed mutagenesis reveal reduced hydrolytic activity upon O antigen binding, likely to facilitate polymer loading into the ABC transporter. Our results elucidate critical steps in the recognition and translocation of polysaccharides by ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antígenos O , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Hidrólise , Antígenos O/química
10.
Heliyon ; 8(7): e09887, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35821966

RESUMO

Galahad™ is a proanthocyanidin complexed with polysaccharides that inactivates viruses and indicates potential for an innovative approach to making protective vaccines. The polysaccharide portion of Galahad™ consists mainly of arabinan and arabinogalactan. In a seven-day toxicity study in rats, it was not toxic even when tested undiluted. Galahad™ inactivated a wide range of DNA and RNA viruses including adenoviruses, corona viruses such as SARS-CoV-2, and influenza viruses. Electron microscopy studies showed that exposure to Galahad™ caused extensive clumping of virions followed by lack of detection of virions after longer periods of exposure. Based on the viral inactivation data, the hypotheses tested is that Galahad™ inactivation of virus can be used to formulate a protective inactivated virus vaccine. To evaluate this hypothesis, infectious influenza A virus (H5N1, Duck/MN/1525/81) with a titer of 105.7 CCID50/0.1 ml was exposed for 10 min to Galahad™. This treatment caused the infectious virus titer to be reduced to below detectable limits. The Galahad™ -inactivated influenza preparation without adjuvant or preservative was given to BALB/c mice using a variety of routes of administration and dosing regimens. The most protective route of administration and dosing regimen was when mice were given the vaccine twice intranasally, the second dose coming 14 days after the primary vaccine dose. All the mice receiving this vaccine regimen survived the virus challenge while only 20% of the mice receiving placebo survived. This suggests that a Galahad™-inactivated influenza virus vaccine can elicit a protective immune response even without the use of an adjuvant. This technology should be investigated further for its potential to make effective human vaccines.

11.
Proc Natl Acad Sci U S A ; 119(19): e2202439119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512094

RESUMO

SignificanceMesothelin (MSLN) is a cell-surface protein that is a popular target for antibody-based therapies. We have identified shed MSLN as a major obstacle to successful antibody therapies and prepared a monoclonal antibody that inhibits shedding and makes very active CAR T cells whose activity is not blocked by shed MSLN and merits further preclinical development.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Mesotelina , Linfócitos T
12.
Sci Rep ; 12(1): 4352, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288626

RESUMO

Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Animais , Células Endoteliais/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
13.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
14.
Front Mol Biosci ; 8: 649575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179075

RESUMO

The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.

15.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804872

RESUMO

Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-ß-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.


Assuntos
Acetobacteraceae/metabolismo , Doença Granulomatosa Crônica/microbiologia , Lipídeo A/química , Acetatos/análise , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/patogenicidade , Sequência de Carboidratos , Citocinas/sangue , Doença Granulomatosa Crônica/sangue , Humanos , Lipídeo A/metabolismo
16.
Front Plant Sci ; 12: 589518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633757

RESUMO

The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The Arabidopsis thaliana fucosyltransferases (FUTs), AtFUT4, and AtFUT6, are members of the plant-specific GT family 37 (GT37). AtFUT4 and AtFUT6 transfer fucose (Fuc) onto arabinose (Ara) residues of arabinogalactan (AG) proteins (AGPs) and have been postulated to be non-redundant AGP-specific FUTs. AtFUT4 and AtFUT6 were recombinantly expressed in mammalian HEK293 cells and purified for biochemical analysis. We report an updated understanding on the specificities of AtFUT4 and AtFUT6 that are involved in the synthesis of wall localized AGPs. Our findings suggest that they are selective enzymes that can utilize various arabinogalactan (AG)-like and non-AG-like oligosaccharide acceptors, and only require a free, terminal arabinofuranose. We also report with GUS promoter-reporter gene studies that AtFUT4 and AtFUT6 gene expression is sub-localized in different parts of developing A. thaliana roots.

17.
J Int Med Res ; 49(2): 300060520976864, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33535865

RESUMO

OBJECTIVE: This study aimed to investigate the expression of O-linked glycoprotein glycans in tissue of patients with cholangiocarcinoma compared with adjacent normal tissue. METHODS: Sixty patients with cholangiocarcinoma were included in the study. Permethylated O-linked glycans from intrahepatic cholangiocarcinoma tissue and adjacent normal tissue were analyzed using nano-spray ionization-linear ion trap mass spectrometry. Histochemistry of peanut agglutinin lectin was used for detection and localization of galactose (Gal) 1, N-acetyl-galactosamine (GalNAc) 1. RESULTS: O-linked glycans from patients with cholangiocarcinoma were composed of di- to hexa-saccharides with a terminal galactose and sialic acids (N-acetylneuraminic acid [NeuAc]). A total of eight O-linked glycan structures were detected. Gal1GalNAc1 and Gal2 N-acetyl-glucosamine 1 GalNAc1 expression was significantly higher in tissue from patients with cholangiocarcinoma compared with adjacent normal tissue, while NeuAc1Gal1GalNAc1 expression was significantly lower. High Gal1GalNAc1 expression was significantly associated with the late stage of cholangiocarcinoma (stages II-IV), lymphatic invasion, and vascular invasion. CONCLUSION: Our study shows expression of O-linked glycans in progression of cholangiocarcinoma and highlights the association of Gal1GalNAc1 with lymphatic and vascular invasion of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ductos Biliares Intra-Hepáticos , Humanos , Fenótipo , Polissacarídeos
18.
Carbohydr Polym ; 258: 117700, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593571

RESUMO

An immuno-stimulatory polysaccharide (EtISPFa) was purified from water extract of the fungus Echinodontium tinctorium. EtISPFa has an estimated weight average molecular weight (Mw) of 1354 kDa and is composed of glucose (66.2 %), glucuronic acid (10.1 %), mannose (6.7 %), galactose (6.4 %), xylose (5.6 %), rhamnose (3.1 %), fucose (1.8 %), and arabinose (0.2 %). It has multiple glycosidic linkages, with 3-Glcp (19.8 %), 4-GlcpA (10.8 %), 6-Glcp (10.7 %), and 3,6-Glcp (8.7 %) being the most prominent. NMR analysis showed that EtISPFa has a backbone containing mostly of 3-substituted ß-glucopyranose with 4-substituted glucopyranosyluronic acid. Short side chains consisting of an average of two ß-glycopyranose residues, connected through 1→6 linkages, are attached to the 6-position of about every 4th or 5th backbone glucose residue. EtISPFa is a novel glucuronic acid-containing ß-glucan capable of significantly inducing the production of cytokines IL-17, IL-16, MIP-2, G-CSF,GM-CSF, LIF, MIP-1α, MIP-1ß, and RANTES in vitro. EtISPFa should be further explored for its immuno-stimulatory activity in vivo.


Assuntos
Basidiomycota/metabolismo , Citocinas/metabolismo , Ácido Glucurônico/química , Polissacarídeos/química , Animais , Arabinose/química , Quimiocinas/metabolismo , Fucose/química , Galactose/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/análise , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Manose/química , Metilação , Camundongos , Monossacarídeos/química , Células RAW 264.7 , Ramnose/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Xilose/química
19.
ACS Chem Biol ; 15(10): 2692-2701, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32809798

RESUMO

Various biological processes at the cellular level are regulated by glycosylation which is a highly microheterogeneous post-translational modification (PTM) on proteins and lipids. The dynamic nature of glycosylation can be studied through metabolic incorporation of non-natural sugars into glycan epitopes and their detection using bio-orthogonal probes. However, this approach possesses a significant drawback due to nonspecific background reactions and ambiguity of non-natural sugar metabolism. Here, we report a probe-free strategy for their direct detection by glycoproteomics and glycomics using mass spectrometry (MS). The method dramatically simplifies the detection of non-natural functional group bearing monosaccharides installed through promiscuous sialic acid, N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc) biosynthetic pathways. Multistage enrichment of glycoproteins by cellular fractionation, subsequent ZIC-HILIC (zwitterionic-hydrophilic interaction chromatography) based glycopeptide enrichment, and a spectral enrichment algorithm for the MS data processing enabled direct detection of non-natural monosaccharides that are incorporated at low abundance on the N/O-glycopeptides along with their natural counterparts. Our approach allowed the detection of both natural and non-natural sugar bearing glycopeptides, N- and O-glycopeptides, differentiation of non-natural monosaccharide types on the glycans and also their incorporation efficiency through quantitation. Through this, we could deduce interconversion of monosaccharides during their processing through glycan salvage pathway and subsequent incorporation into glycan chains. The study of glycosylation dynamics through this method can be conducted in high throughput, as few sample processing steps are involved, enabling understanding of glycosylation dynamics under various external stimuli and thereby could bolster the use of metabolic glycan engineering in glycosylation functional studies.


Assuntos
Glicopeptídeos/análise , Glicoproteínas de Membrana/análise , Espectrometria de Massas em Tandem/métodos , Algoritmos , Sequência de Carboidratos , Linhagem Celular Tumoral , Cromatografia Líquida , Glicômica , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Células Jurkat , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica , Espectrometria de Massas em Tandem/estatística & dados numéricos
20.
J Int Med Res ; 48(7): 300060520903216, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32692591

RESUMO

OBJECTIVE: To investigate the expression of glycosphingolipids in serum and tissue from patients with cholangiocarcinoma compared with healthy controls. METHODS: Nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) was used to demonstrate the comparative structural glycomics of glycosphingolipids in serum from patients with cholangiocarcinoma (n=15), compared with healthy controls (n = 15). GM2 expression in cholangiocarcinoma tissues (n = 60) was evaluated by immunohistochemistry. RESULTS: Eleven glycosphingolipids were detected by NSI-MSn: CMH (ceramide monohexose), Lac-Cer (galactose (Gal)ß1-4 glucose (Glc)ß1-1'-ceramide), Gb3 (Galα1-4Galß1-4Glcß1-1'-ceramide), Gb4/Lc4 (N-acetylgalactosamine (GalNAc)ß1-3Galα1-4Galß1-4Glcß1-1'-ceramide/Galß1-4 N-acetylglucosamine (GlcNAc)ß1-3Galß1-4Glcß1-1'-ceramide), GM3 (N-acetylneuraminic acid (NeuAc)2-3Galß1-4Glcß1-1'-ceramide), GM2 (GalNAcß1-4[NeuAc2-3]Galß1-4Glcß1-1'-ceramide), GM1 (Galß1-3GalNAcß1-4[NeuAc2-3]Galß1-4Glcß1-1'-ceramide), hFA (hydroxylated fatty acid)-CMH, hFA-Lac-Cer, hFA-Gb3, and hFA-GM3. Lac-Cer was the most abundant structure among the lactosides and globosides (normal, 24.40% ± 0.11%; tumor, 24.61% ± 2.10%), while GM3 predominated among the gangliosides (normal, 29.14% ± 1.31%; tumor, 30.53% ± 4.04%). The two glycosphingolipids that significantly differed between healthy controls and patients with cholangiocarcinoma were Gb3 and GM2. High expression of GM2 was associated with vascular invasion in tissue from patients with cholangiocarcinoma. CONCLUSIONS: Altered expression of glycosphingolipids in tissue and serum from patients with cholangiocarcinoma may contribute to tumor growth and progression. The ganglioside GM2, which significantly increased in the serum of patients with cholangiocarcinoma, represents a promising target as a biomarker for cholangiocarcinoma.


Assuntos
Colangiocarcinoma , Gangliosídeo G(M2) , Biomarcadores , Colangiocarcinoma/diagnóstico , Gangliosídeos , Glicoesfingolipídeos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA